Fusion 360 Maseters 大上竹彦スペシャル

フィギュア"歯車とリス"の制作

書籍「Fusion 360 Masters」(ソーテック社刊)に掲載しきれなかった作品のうち、大上竹彦氏の オリジナルフィギュア"歯車とリス"のメインキングをPDFにて公開します。この作品はじめに『ZBrush』 でリスをモデリングし、その後データを『Fusion360』にインポートして新たにモデリングした歯車の パーツをアセンブリして合体。最後は3Dプリントで、触って動かせるフィギュアとして仕上げています。

『Fusion 360』で細部まで設計し、3Dプリンターで出力しても歯車がき ちんと回るかを検証しました。

モデリングは『ZBrush』からのスタートです。 球の状態から頭部を作成していきます。最 初は主にシルエットを起こすために【ムーブ ブラシ】を使っています。ある程度フォルム ができたら、【クレイビルドアップブラシ】で 目のくぼみや頬の膨らみなどのメリハリを付 けていきます。

●耳の根元を【マスク】し【ムーブブラシ】で引き出します。 2さらに、【インサートスフィアブラシ】で目・鼻・口を加えていきます。これだけで、だいぶリスっぽい形になってきました。

同じ要領で体の部分も【インサートスフィア ブラシ】を大きく入れて、【ムーブブラシ】で 調整します。

06 ^{現在、 360」} リコン

現在、パーツがそれぞれバラバラの状態なので**① 【ダイナメッシュ】**でひとつにします。計算が終わったら、『Fusion 360』にインポートできるように、②【Zリメッシャー】をかけて四角ポリゴンにし、OBJで書き出します。その際、三角ポ リゴンが混じると後々『Fusion 360』で問題が発生しますので注意してください。

※【ダイナメッシュ】と【Zリメッシャー】はジオメトリーの中にあります。

Fusion 360でリスをモデリングする

『Fusion 360』を起動し、先ほど『ZBrush』で保存したOBJデータをインポ ートします。 **①雲のマーク**をクリックして、 **②**いったんクラウドにデータを【アッ プロード】します。

データがクラウドにアップされると[『]Fusion 360』へのインポートが可能になります。ただし、最初にデータを読み込んだ時点ではメッシュ形状なので何もできません。切ったり穴をあけたりといった加工を行うためは、ソリッド形状にしなければなりません。

 $\bigcirc \bigcirc$

変更したいメッシュを選択して右クリックし、 **①** 【変換】を選びます。この作業を2回するのですが、 **②**1回目の変換では 【メッシュ形状】→【スカルプト形状】を実行し、 **③**さらに【変換】することで**④** 【ソリッド形状】になります。この変換作業 を経てはじめて、加工ができるようになります。

 ●【外観】を自分の気に入ったマテリアルにして、引き続き作業しましょう。
●ただし、この状態では履歴が残らないので、 【デザイン履歴をキャプチャ】を選択しておきましょう。

歯車をモデリングしてリスと合体する

大まかにリスができたところで、次は歯車を作っていきましょう。**❶【アドイン】** から<mark>❷【SPUR GEAR (スパーギア)】</mark>を実行します。

12

小歯車の数

12本

偶数

歯車を作るのにまずあたりの直径 を測り比率を合わせました。 **①**の データは小さい歯車がピッチ円直 径 12mm (噛み合う位置の直径) です。大きい歯車のピッチ円直径 は31mmでした。

大歯車の数

31本

奇数 できれば素数が望ましいです

素数とは

「素数」は1と自分の数でしか割ることのできない孤独 な数字です。余談ですが、素数を数えると落ち着くらし いです。

偶数と偶数の組み合わせはダメ。絶対!

公約数を持たないようにしてください。1以外の公約数を持たなければよいの で、素数同士は大丈夫です。例えば、17と31、17と28、17と25など、ど ちらかが素数だと公約数が1のみになります。もちろん、素数同士でも公約 数は1のみなのでOKです。偶数同士だと1以外に必ず2が公約数になるので、 偶数同士はアウトです。

【アセンブリ】の【回転ジョイント】や【モーションリンク】などを使い、回転のシュ ミレーションを行うこともできます。

3Dプリントへ

仕上げはSTL形式で書き出して3Dプリントへと移行します。今回はなんと分 割なしの「一発出し」です。サポートをある程度取り、後はボキっとなるまで歯 車を回せば噛み合います。

歯車の大きさを調整する しかし、リスと歯車を3Dプリントして、歯車も回ったのですが、あまりスムーズに 回転しませんでした。そこで、もっとスムーズに回るように、歯の数を減らし、歯を 大きくすることで調整しました。

1 歯車の歯を変更するための計算式 モデリング時と3Dプリント後の調整で、歯車の歯の数をどのように計算したのか 紹介します。

前回の式(純粋に直径を歯の数にしました)

直径は測ったら出るので12。モジュールはとりあえず、分かりやすい数字を入れました。この式により、歯の数が出せます。

歯を減らすための式 (モジュールを1.5倍に!)

大きい歯車の直径を前回の31から31.5に変更した理由は「31÷1.5=20.6666...」で割り切れないからです(歯の数で少数点はありえません)。従って、割り切れる31.5に変更しました。

アドイン 【SPUR GEAR (スパーギア)】の入力例 小歯車、大歯車ごとに 【アドイン】 の 【SPUR GEAR (スパーギア)】 へ調節した 数値の入力例です。

制作プロセスを動画でチェックする

今回説明した「歯車とリス」のメイキングは動画でもご覧いただけます。ソーテック 社の「Fusion 360 Mastersサポートページ」または大上竹彦氏のYouTubeチャ ンネルにて公開中です。

Fusion 360 Masters サポートページ

http://www.sotechsha.co.jp/sp/1163/

Fusion 360 Masters サポートページ

本書をご購入いただき、誠にありがとうございます。 このページでは、本書に惜しくも掲載できなかった作品の制作プロセスをPDFと動画でご提供す 内容の訳りや訳植などの訂正情報を掲載いたします。

大上竹彦氏 描き起こし作品「歯車とリス」の制作プロセス

本書227ページに紹介されている作品です。ZbrushでモデリングしてからFusion 360で仕上 う、制作プロセスを踏んでいます。

ここでは本書と同じデザインのPDF版、大上氏自身により作成された制作動画をどちらも無償公 す。下記のリンクをクリックすると、Webプラウザ上で閲覧できます。ダウンロードしたい場合

大上竹彦氏の YouTube チャンネル (MsKinoko007)

https://www.youtube.com/user/MsKinoko007

Fusion 360 Books Information

大上竹彦氏の「歯車とリス」のメイキングはいか がだったでしょうか? 『Fusion 360』にはコンセプ トカー、電動義手、スマートウォッチ、ドローン、ガ レージキット、モデルカー、金属造形作品など、多 様な〈ものづくり〉を可能にする様々なツールが搭載 されています。 もし、まだ『Fusion 360』を使ったことのない方 はチャンスです。これから『Fusion 360』をはじめて、 自分の可能性にチャレンジしましょう! 以下に、株式会社ソーテック社が刊行している、 おすすめ書籍をご紹介しますので、ぜひ参考にしてみ てください。

Fusion 360 モデリング・マスター

本書はクラウドベースの3DCADソフト「Fusion360」の使い方を 基本から応用まで徹底解説したガイドブックです。鉛筆キャップ、スマ ホスタンド、小物入れといった身近な題材を例に、ソリッドモデリング の基本を演習形式で学べます。さらに後半ではミニ四駆ボディを題材 としながら、Tスプラインモデリング、レンダリング、3Dプリントの方 法なども詳しく解説します。

単行本: 303ページ 出版社: ソーテック社 ISBN978-4-8007-1141-0 発売日: 2016/7/22 価格: 2.800円+税

リリース情報:http://www.sotechsha.co.jp/pc/html/1141.htm Amazonページ:www.amazon.co.jp/dp/480071141X

ゼロからはじめる初心者にオススメ!

Fusion 360 Masters

オートデスク株式会社公認 Fusion 360の達人が魅せる 究極の 3D CAD アートワーク技法

クラウドベースの3D CAD/CAM/CAEソフト『Fusion 360』の達 人らが集結。プロダクトデザイナー、メカニカルデザイナー、CGデザ イナー、原型師、金属造形作家など、日本を代表するトップクリエイ ターの代表作品・インタビュー・制作過程を一挙に公開します。 たんなるメイキングではない、3D CADにおける「アプローチ」や 「概念」を追求した、これまでにない書籍です。

単行本: 320ページ 出版社: ソーテック社 ISBN978-4-8007-1163-2 発売日: 2017/4/27 価格: 3,800円+税

リリース情報:http://www.sotechsha.co.jp/pc/html/1163.htm Amazonページ:www.amazon.co.jp/dp/4800711630

